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1. Phys. A: Math. Gen. 26 (1993) 5339-5349. Rinted in the UK 

Linear and nonlinear diffusion and reaction-diffusion equations 
from discrete-velocity kinetic models 

Damihn H Zanette 
Scccion de Fisica Estadirtica-Divisi6n Firica Teorica, Cenrro At6mico Bariloche (CNEA) 
and lnstituto Balsciro (UNC), 8400 Bariloche, Rio Negro. Argentina 

Received 27 August 1992, in final form 2 Febmar) 1993 

Absbm. Two-velocity kinetic models are used to derive, in the appropriate limit, the 
equations which govem the macroscopic density of fluid systems. Such equations are 
obtained from an asymptotic expansion in powers of a small parameter related to the 
microscopic mean free path. It is shown that the density of a Euid interacting with a 
non-equilibrium backgmund satisfies a linear d i h i o n  equation, and that the hierarchy 
ofequations arising from the asymptotic expansion can be completely solved by a recursive 
scheme. For a system of intmaning particles, a nonlinear dieusion equation is obtained 
and some of its solutions are analysed. Finally, the density of a system of particles 
undergoing chemical reactions is shown to satisfy a nonlinear equation which formally 
coincides with the reaction-diffusion equation proposed ad hoc at the macroscopic level. 

1. Introduction 

It is well known [I] that the linear diffusion equation (DE) 

a,n - DV:n = 0 (1.1) 

which governs, for example, the evolution of the macroscopic density n(x, t )  of an 
infinite set of Brownian particles diffusing in a background, can be derived in a proper 
limit from a more fundamental description level. This is usually performed from the 
Fokker-Planck kinetic equation 

(a,+vv,)f(x, u, t ) =  v ~ , . ( a + y ~ , ) f ( x ,  U, t) ( 1.2) 

which determines the evolution of the distribution function f (x, U, t)  for a system of 
particles with mass m at temperature T, interacting with the background with a collision 
frequency U. By scaling time and space according to t-b t /s2  and x-t  X/E, the DE, 

equation ( I J ) ,  is found to govern the evolution of n =jfdu in the limit E + O ,  with a 
diffusion coefficient D = kBT/vm [2,31. 

However, the Fokker-Planck equation is not the only kinetic model able to produce 
a DE at the macroscopic level. For instance, proper transition frequencies in the 
Boltzmann equation also describe a macroscopic diffusive behaviour [4]. In general, 
DES are expected to arise from scaled kinetic equations of the type 

(&*at+ &U'V.)f(& U, t ) = ( a f ) c o i i  (1.3) 
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where the explicit form of the collision operator (Jf), , ,  is determined by the underlying 
kinetics. The small parameter e defines interrelated observation scales on the spatial 
and temporal coordinates. In fact, E is eliminated from (1.3) by defining the scaled 
variables f'= r/e2 and x'= X/E. The limit E + O  corresponds to interrelated macroscopic 
observation scales for space and time. In this limit, the density associated with the 
solution f ( x ,  U, t) to (1.3) should satisfy a DE. 

The aim of this paper is to derive the DE and related macroscopic equations from 
some very simple kinetic models, namely, discrete-velocity models (DVMS). !n fact, in 
the frame of DVMS, such derivations can be rigorously performed in a variety of 
situations of physical interest. in particular, it is possible to study some problems of 
nonlinear diffusion and to incorporate the effects of reaction processes (like chemical 
or nuclear reactions) which create or destroy particles. 

In view of the high mathematical complexity which characterizes kinetic problems, 
DVMS [SI have been introduced as a reasonable simpliication, preserving the main 
ingredients of realistic models, such as nonlinearity. Generally, they have been found 
to give an acceptable qualitative description of real systems. They were used to describe 
combustion phenomena [6], dynamics of shock waves [7,8] and chemical reactions 
in diluted systems [9 ] .  Furthermore, they have inspired the introduction of lattice gases 
[ 101, which play a fundamental role in the computational study of fluid dynamics. 

In DVMS, it is considered that the velocity of each particle in the gas under study 
can adopt a value among a discrete set of previously fixed vectors { u , } ~ - , , . , , , ~  The 
distribution functionf(x, U, t) reduces to a set of NpartialdensitiesJ(x, t), i = 1,. . . , N ,  
so that the quantity f;(& t )  dx represents the number of particles with velocity U, in 
the elementary volume dx around x, at time f. The evolution of each distribution 
function f; is given by an equation of the type [ 111 

(J,+ U ; . V x ) J ( X ,  t )  

= [w(n,m+i , i ) f . (x , t ) f , (x , t ) -WW(i , j+n,m)f ; (x , f ) f i (x , t ) l  (1.4) 

where the summation indices run from 1 to N. The transition frequency W(i,  j+ n, m )  
indicates the probability per unit time for occurrence of the binary collision with 
incoming velocities U, and U, and outgoing velocities U. and U,,,. These probabilities 
are required to satisfy the detailed bnlonce property, namely 

( 1 . 5 ~ )  

which stands for microscopic time-reversibility. If the interacting particles are of the 
same species, the transition frequencies also verify the symmetries 

(1.56) 

A particular choice of the transition frequencies, satisfying ( 1 . 5 ~ )  and, eventually, 
(1.5b), specifies an interaction model and defines the explicit form of equations (1.4), 
to be solved with appropriate initial and boundary data. 

In the simplest one-dimensional DVM, N =2, and, without loss of generality,'the 
velocities are taken to be U, = -U and o2 = U [6,?, 91. The corresponding distribution 
functions are denoted by f-(s 1 )  and f+(x, t ) ,  respectively. In the case of binary 
interaction between identical particles, the general form of the kinetic equations (1.4) 
for two-velocity models is [ 121 

(~,*~~.)f,=*[a-f-+(a+-a-)f-f+-a+f2+1 (1.6) 

Ism" 

W(i, j +  n, m )  = W(n, m + i, j )  

W(i, j +  n, m )  = W (  j ,  i -f n, m )  = W( j ,  i + m, n) .  
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where the positive constants a ,  are directly related with the transition frequencies. 
Here, the analysis wil l  be restricted to the Carleman interaction model [ 131, which 
takes a- = a+. This is the only two-velocity model satisfying the symmetry of spatial 
inversion Observe that, independently of the values of a ,  a particular stationary solution 
to equations (1.6) is given by f-=f+= n / 2 ,  where n is the spatially homogeneous 
density associated with such an equilibrium state. 

The general solution to equations (1.6) is not known, even though some exact 
similarity solutions have been found [14], and the boundary-free, spatially 
homogeneous problem can be solved generally [ IS]. Then, because of both the intrinsic 
mathematical interest and the potential applications of DVMS, it is relevant to develop 
methods for the analysis of the solutions to the related kinetic equations. In the 
following, it is shown that, in an appropriate limit, the particle density in a two-velocity 
model satisfies a diffusion-like (macroscopic) equation. According to the particular 
situation under study, different macroscopic equations are obtained and, eventually, 
solved. These equations suggest the type of evolution laws to be satisfied by the density 
field in more realistic models. 

2. The diRusion equation 

Diffusive behaviour is known to be exhibited by a dilute (guest) fluid immersed in a 
(host) background, when the interaction between guest particles and the effect of the 
guest species on the background dynamics are neglected. The evolution of the guest 
species is then driven by the interaction with the background, which is supposed to 
be in thermal equilibrium. 

In order to introduce guest-background interaction in the frame of two-velocity 
kinetic models, equations (1.6) must be modified. Let the background be considered 
as a two-velocity species with velocities * V. The corresponding distribution functions, 
F&, t), satisfy a set of equations of the type (1.6). If the host medium is in its 
equilibrium state, F- = F+ = N / 2 ,  where N is the equilibrium background density. 

Neglecting the guest-guest interaction, the scaled kinetic equations for the guest 
distribution functions, f+(x, t ) ,  are 

(&2a,*&va,)fi=+[f_(w_+F++ w--F-)-f+(w++F++ w,-F-)l (2.1) 
where wi, is the transition probability for the collision between a guest particle with 
velocity iu and a host particle with velocity jV, producing an outgoing guest particle 
with velocity -iv. The invariance under spatial inversion requires that w++ = w-- and 
w-+ = w+-. Since F- = F+ = N/2,  equations (2.1) reduce to 

wN 
( E 2 J , * & o a , ) f * = * l ( f - - f + )  (2.2) 

with w = w-- + w-+.  At this point, it is convenient to introduce the ‘macroscopic’ 
density n(x, t )  =f+(x, t ) + f - ( x ,  t )  and current j (x ,  t ) =  v[f+(x,  t ) - f - (x ,  t ) ] .  For two- 
velocity models, the macroscopic description in terms of n and j is equivalent to the 
kinetic description in terms of the distribution functions. The evolution equations for 
the density and the current are 

E2a,n + E J ~  = 0 (2.3a) 

E ’ 8 j - k  EU2d,n = -wNj. (2.3b) 

In (2.3a), one recognizes the (scaled) continuity equation. 
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The solutions to equations (2.3) in the limit E + O  can be analysed by expanding n 
and j in powers of e, namely 

m 

n(x, t )  = &hi(& f) 
i-0 

m 

i(r, t ) =  E%(x, t ) .  

Entering these expansions in (2.3), one obtains 

1-0 

m m .  c E'a,n,- ,+ e i a j i - , = o  
i-2  1-1 

m m m 

~ ' a j , - ~ +  ;I: e'v2a,ni-,=-wN E$. 
f-2 iCl i-0 

For i = 0 and i = 1, these equations imply 

jo=O 

and 

aj,=o 
v2ago = - WW, 

a,n,-2+aji-1 = O  

respectively. For iZ-2, instead, one has the hierarchy 

v2J,ni-l = -wNjl. 

(2.4) 

(2.5a) 

(2.5b) 

( 2 . 6 ~ )  

(2.6b) 

( 2 . 6 ~ )  

Equation (2.6a) indicates that the macroscopic current jo (i.e. the value of j in the 
limit E -* 0) vanishes, as expected for an isotropic diffusing system. Meanwhile, the 
spatial derivative of the second of equations (2.66) can be combined with the first of 
equations ( 2 . 6 ~ )  for i = 2, which provides the value of a&. This manipulation yields 

V Z  a,n,--a*n - 0  
W N  '- (2.7) 

i.e. a diffusion equation to be satisfied by the macroscopic density no. The diffusion 
coe5cient D = vz/wN, is proportional to the square modulus of the guest particle 
velocity v, which measures the kinetic energy-and, in some sense, the temperature-of 
the guest fluid. On the other hand, it is inversely proportional to the interaction rate 
w and the background density N. Indeed, an increase in its density or in the intensity 
of the interaction with the guest fluid would impede the transport of this latter species. 

Higher order densities satisfy, in general, inhomogeneous DES. In fact, combining 
the second of equations ( 2 . 6 ~ )  for the ith order with the 6rst equation for the next 
order, one obtains 

a,n, - Da:n, = J,aj+, (2.8) 
for i >  1. In particular, since jo=O, the first-order density n,  is also govemed by (2.7). 

The solutions for jo ,  no and j , ,  as given by equations (2.6a), (2.66) and (2.7). 
provide the initial step for calculating a given current order j i  from jt-* and n,-,  through 
the second of equations ( 2 . 6 ~ ) .  The corresponding density order n, is given by (2.8), 
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in terms of the previous current order j,-,. This recursion scheme can then be used to 
formally obtain the general solution to the diffusion two-velocity problem, up to an 
arbitrary order in the expansion in powers of E. Successive orders in that hierarchy 
determine corrections to the macroscopic behaviour governed by the DE, equation (2.7). 

3. A nonlinear diffusion equation 

The procedure introduced in section 2 can be applied to a more interesting situation, 
namely, the evolution of a self-interacting gas. In fact, the Carleman model, as stated 
by equations (1.6) with a-=a+, stands for the kinetics of a system of identical 
interacting particles. At the macroscopic level, this interaction should imply nonlinear 
features in the evolution of the system, which, in particular, should not be described 
by a lihear DE like (2.7). Such a nonlinear macroscopic behaviour, defined in the sense 
of the scalings studied in section 2, will be hereafter referred to as nodinear diffusion. 

Taking a- = a+ = 0/2 ,  equations (1.6) reduce to the Carleman kinetic equations, 
namely 

L 

In terms of the density n and the current j ,  and with proper scalings in space and time, 
these equations become 

&'J,n + E a j  = o 
&'aJ+&v2J.n = -wnj 

(3%) 

(3.26) 

i.e. a continuity equation for n and a nonlinear evolution equation for j. Expanding 
the density and the current as in (2.4), the first two orders imply 

j a = O  

02J,na = -onajl 

(3.3a) 

(3.36) 

so that, as in the linear diffusion case, the macroscopic state carries no current. For 
iZ-2, one gets 

J,n+,+ J& = 0 
(3.34 

The combination of (3.3b) and the first of equations ( 3 . 3 ~ )  with i=2, yields the 
following partial differential equation for the macroscopic density %(x, t ) :  

V 2  
J,no--Ja,(n;la=no)=O 

0 
(3.4) 

i.e. a nonlinear diffusion equation. It corresponds to a DE with a density-dependent 
diffusion coefficient. D(no) = u2/ono. As was found in the linear case, this diffusion 
coefficient is proportional to the square of particle velocity and inversely proportional 
to the collision frequency. The proportionality with the inverse of density can also be 
interpreted as in the linear case: high particle densities difficult diffusion. 
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The hierarchy of equations for densities and currents, equations (3.3), can be solved 
recursively by a straightforward extension of the scheme described at the end of section 
2. The density orders are then governed by inhomogeneous diffusion-type equations, 
involving lower density and current orders. For example, the first order density n,(& t)  
satisfies 

U 2  U2 
J,n1 - - ~ , ( n ~ l ~ , f l l ) + ~ J , ( n , ’ n l ~ , f l ~ )  w = O .  (3.5) 

Once no is known, (3.5) is a lineur DE for n , ,  with a drift term. The diffusion coefficient 
coincides with that encountered for the nonlinear DE (3.4). The drift term involves a 
‘velocity field‘ given by 

U2 
U(& t)=-Qa.n,. (3.6) 

Since (3.4) is a non-standard DE, it is now worthwhile discussing its solutions [ 161. 
Because of their physical interest, two similarity solutions are considered here. The 
first one, with a similarity variable of the type x / t ,  is 

w 

where xo, to and T ~ > O  are arbitrary constants. In particular, vo can be seen as the 
density for x = ~0 at time f = to+ 1. The right-hand side of (3.7) is positive and well 
defined forall t >  to. Forsuchvalues oft, no(& 2 )  is a symmetricbell-shaped distribution, 
centred at x = xo. Because of the prefactor ( t  - to)-’, the total area under the curve is 
preserved for all times, as required by the conservation of the particle number. This 
area is N = ~ ( 2 u ~ ~ a / o ) ” ~ ,  which provides a new interpretation for the constant v0 in 
terms of the total number of particles present in the system. 

It must be remarked that the width of no(& t )  as a function of space grows lineurly 
with t, namely, U = ut. This result has to be confronted with the typical (Dt)”’-behaviour 
of linear diffusion. In this sense, the solution to the nonlinear DE (3.4) cannot be 
considered to exhibit diffusive evolution. It exhibits, instead, bullistic behaviour. This 
difference between the evolution in linear and nonlinear diffusion could be interpreted 
as the macroscopic reflex of the different single-particle dynamics involved in each 
system at the very microscopic level. 

The second solution to (3.4) to be considered here is a travelling wavefront, for 
which no(& t) depends on space and time through the combination .$ = x - ct. In terms 
of the new variable, (3.4) reads 

U2 
c&+- (n;’n;)‘= 0 

w 

where the primes indicate differentiation with respect to [. J3e general solution to 
(3.8) reads 

k 
no( E )  = - ( 1 + K e-”””)-’ (3.9) 

where k and K are two arbitrary integration constants. Physically meaningful solutions 
are obtained with k / c > O  and K >O.  Equation (3.9) represents a step-shaped function 
which, for positive (negative) values of e, grows (decreases) from zero to k / c  as .$ 

C 
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varies from -a to +a. In the original x, t coordinates, this wavefront moves in such 
a way that, for a fixed point x, the density decreases from k l c  to zero. 

The existence of a wavefront solution for the nonlinear DE (3.4) has to be seen as 
a new peculiarity with respect to the linear DE, entirely due to the nonlinear ingredient. 
Indeed, linear diffusion does not support (bounded) shape-preserving, travelling 
solutions. 

In order to describe systems of interacting particles in the presence of a background 
medium, linear and nonlinear diffusion can be combined into a single equation. The 
collision term in the kinetic equations for such a situation is simply given by the sum 
of the collision terms describing each interaction process. In this case, from equations 
(2.2) and (3.1), one gets 

-f+). (3.15) 

The macroscopic density no(x, t )  is found to satisfy the following nonlinear DE: 

U* 
a,no-- a.[( w N t  wno)-’a,n0J = 0 

0 
(3.16) 

with a d i ~ s i o n  coe5cient D(no)=u2(wN+ono)-’.  This equation reduces to the 
previously studied cases either for WN + 0 or for w + 0. 

In order to seek for solutions to (3.16), one can first observe that a redefinition of 
the unknown as w&= wN+wno reduces the equation to (3.4) for & and, therefore, 
provides a solution of the type (3.7). In the second place, (3.16) admits also a set of 
travelling wavefront solutions. However, all these solutions prove to be negative on 
some intervals of x and t, and, in consequence, they are not physically meaningful. 
To the author’s knowledge, the problem of finding a non-negative solution to (3.16), 
which would clarify the interplay between linear and nonlinear diffusion, remains open. 

It is interesting to note that nonlinear diffusion equations of the type (3.4), which 
are used to describe transport processes in population dynamics [17], have been proven 
to exhibit solutions with non-diffusive behaviour, as in (3.7). In particular, it is shown 
in [17] that for a density-dependent diffusion coe5cient D ( n ) a n h  (yith k>O), there 
exist a similarity solution whose width grows as t”(2+k). According to the results 
obtained here, (3.7), this scaling holds also for k=-1 .  Such nonlinear dihsion 
equations are also known to have wavefront similarity solutions. 

As in the case of gas kinetics, the nonlinear character of the equations, which gives 
place to pathological solutions of the types studied here, is due to the interaction of 
the system components. Furthermore, in population dynamics, processes in which 
these components are created or destroyed play a fundamental role. Such processes 
are also found in gas kinetics, when chemical or other reaction events are present. An 
extension of the formalism studied so far to the case where reaction processes occur, 
is presented in the next section. 

4. The reaction4iffusion eguation 

Because of its intrinsic mathematical interest and its relevance in some applications, 
much attention has been paid in recent years to the interaction between transport and 
reaction processes [18]. At the macroscopic level, this interaction has been usually 
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modelled by means of the so called reaction-difision equations (RDE~), which govern 
the macroscopic density n(s ,  t )  of a system of particles undergoing Brownian motion 
and subject to events where particles are created or destroyed. These models have 
provided insight on the complex dynamics of pattern formation, oscillations and 
self-organization in chemical kinetics. 

For a single-species system, the RDE is typically written as 

a , n - D a : n = F ( n )  (4.1) 
where the function F ( n )  stands for the contribution of reaction processes to the 
evolution of the density. For chemical reactions, the form of F ( n )  is given by the 
mass-action law of chemical kinetics: F ( n )  is a polynomial in the density, whose 
coe5cients depend on the reaction rates and on the densities of other mediating species 
(whose evolution is not taken into account). 

Modelling reaction processes at the microscopic level provides a derivation of RDES 
from a more fundamental stage. In fact, it is known that if appropriate reaction terms 
are added to the kinetic equations with a scaling of order E' [19], the asymptotic 
expansion in powers of E provides for the zeroth-order density a RDE coinciding with 
that proposed ad hoc at the macroscopic level 1201. 

Consider then a guest species X difising in an equilibrium background, whose 
particles undergo a chemical reaction of the type 

(4.2) 
where the mediating species A and B represent, in general, a set of chemical species 
whose evolution is given from outside of the system. Equations (2.2) are generalized to 

rX +A+ sX + B 

(4.3) 2 (0 wN 
2 (&'a,* sva.)f, = *-- (f--f+)+ E R ,  (f-,f+) 

including the effects of reaction (4.2) through the operators Rg'. The superindex r 
stands for the number of incoming particles involved in the reaction. If the system 
undergoes a set of reactions of type (4.2), the corresponding reaction operators are 
simply added to the RHS of the kinetic equations. Therefore, it is sufficient to consider 
a single reaction, as in (4.3). 

The most general form for the operators RY) must take into account all the velocity 
combinations of r interacting guest particles, and can be written as 

(4.4) 

where the coefficients a(:.k) measure the contribution of each velocity combination to 
the reaction. In general, the sign of a(:.') indicates whether particles are created or 
destroyed by the chemical process. In order to preserve the symmetry under spatial 
inversion, these coefficients must satisfy the relation 

(4.5) &.k) = a ( y - K  

The continuity and the current equations read now 

& , n + & J j  = E ~ [ R ~ ) + R ( _ ' ) ]  ( 4 . 6 ~ )  

e 2 a j +  d a f i  =-WW+ E ~ v ~ [ R ~ ) -  R!?]. (4.6b) 

In terms of n and j the sum and the difference of the reaction operators, as appearing 
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in (4.6), result 

The highly nonlinear character of the RHS of (4.6) inhibits the full explicit expansion 
in powers of E. However, for the first few orders in the hierarchy, it is possible to find 

jo=O 

V2J& = - wh'j, 

J,n,+Jxj, =2-'v2n; [a$k)+a(',k) - 1. 
k=O 

(4.8a) 

(4.8b) 

(4 .8~)  

Again, the macroscopic state is characterized by a vanishing current. This fact implies 
'that, in the expansion of the reaction operators RY), the terms involving successive 
powers of j o  vanish, except for the zeroth power. In the first expansion order, this 
power multiplies the rth power of no, producing the reaction term displayed in (4.8~). 
Combining this equation with (4.8b), which provides the value of j , ,  yields the RDE 

(4.9) 

to be satisfied by the macroscopic density n&, t). 
For a system undergoing a set of chemical reactions of type (4.2), with various 

values of r, no(x, t)  is govemed by a RDE in which the reaction term is given by the 
sum of the contributions due to each reaction, namely 

V 2  
J,no--J:h=z WN (4.10) 

Formally, this equation coincides with the RDE proposed ad hoc for describing the 
evolution of the macroscopic density. A full identification between both RDES is easily 
achieved by relating the coefficients a!,') with the reaction rates and the densities of 
mediating species. 

It is worthwhile to stress that a RDE for the zeroth-order density no is obtained only 
in the case in which reaction terms are weighted by 8' [20]. In fact, if, for instance, 
one chooses to intensify the effects of chemical reactions by scaling reaction terms 
with E, the asymptotic expansion yields, in the limit E -P 0, the equation 

a'%, = 0. (4.11) 

This algebraic equation represents, precisely, chemical equilibrium, so that the macro- 
scopic behaviour of the system is dominated by chemical kinetics. 

On the other hand, if chemical processes are weakened by a scaling e3 or even 
higher power of E, the macroscopic density satisfies the linear DE, equation (2.7), and 
the effects of chemical reaction, in the form of the reaction terms of (4.10), shift to 
higher-order densities. 
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5. Conclusion 

It has been shown that introducing appropriate scalings for space and time in the 
simplest discrete-velocity kinetic models, namely, one-dimensional two-velocity 
models, yields macroscopic diffusion equations for the particle density, whose forms 
depend on the underlying kinetic processes. An asymptotic expansion in powers of 
the (small) scaling parameter, provides a set of equations to be satisfied by the successive 
density and current orders, among which the lowest order represents precisely the 
density and the current observed at macroscopic level. 

The linear diffusion equation has been obtained for the macroscopic density of a 
fluid system interacting with a background medium. In this situation, the kinetic 
equations are linear, as well as each order in the hierarchy of equations arising from 
the asymptotic expansion of density and current. In particular, every density order 
satisfies an inhomogeneous linear diffision equation, except for the two 6rst orders, 
which exhibit purely diffusive behaviour. The linear character of the set of equations 
makes it possible to solve the whole hierarchy up to an arbitrary order by means of a 
recursive scheme, once appropriate initial and boundary conditions have been fixed. 

Linear diffusion has been used as a test situation for evaluating the possibility of 
deriving, in the proper limit, diffusive evolution from discrete-velocity kinetic models. 
In a more interesting situation, namely, a system of binary-interacting particles, it was 
shown that the macroscopic density satisfies a nonlinear diffusion equation with a 
density-dependent difision coefficient, D- n-’. It can be conjectured that this non- 
linear diffusion equation governs the density of more complex models of bmary- 
interacting particle systems. Even when the general solution to this equation seems to 
be unknown, two physically relevant solutions have been identified. The first one 
corresponds to a bell-shaped density distribution, whose width grows linearly with 
time. This ballistic behaviour has to be compared with the t”’-dependence of the 
distribution width obtained for linear diffusion. The second solution studied here 
corresponds to a class of travelling wavefront density, which has no parallel in the 
linear diffusion case. In fact, it is the nonlinear character of (3.4) that supports the 
existence of such a solution. 

The combination of linear diffision in a background and binary interaction yields 
a generalized nonlinear diffision equation, for which, unfortunately, no physically 
acceptable solution has been found. It is worthwhile to stress that having at least one 
solution to this equation could help to clarify the relevant problem of interplay between 
linear and nonlinear diffusion. 

Finally, reaction-diffusion equations have been obtained forthe macroscopic density 
of a system undergoing reaction processes, in which particles are created or destroyed. 
For two-velocity models, it was possible to write the reaction terms to be added to the 
kinetic equations in full generality, i.e. considering all the possible microscopic col- 
lisions involving a given number of particles (equation (4.4)). The reaction-diffusion 
equations obtained from the asymptotic expansion coincide with those proposed ad 
hoc at the macrnscopic level to describe the evolution of the density. Such a result 
agrees with those of [ZO], where it is shown that macroscopic reaction-diffision 
equations arise from some more complex kinetic models for reaction processes. As 
well as in the case of linear diffusion, this suggest that the macroscopic behaviour 
exhibited by discrete-velocity models accurately imitates that of more realistic systems. 
As conjectured before, this conclusion is also expected to apply within more compli- 
cated situations as, for instance, nonlinear diffusion. 
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